Bitcoin Core 22.99.0
P2P Digital Currency
sha3.cpp
Go to the documentation of this file.
1// Copyright (c) 2020 The Bitcoin Core developers
2// Distributed under the MIT software license, see the accompanying
3// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5// Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c
6// by Markku-Juhani O. Saarinen <mjos@iki.fi>
7
8#include <crypto/sha3.h>
9#include <crypto/common.h>
10#include <span.h>
11
12#include <algorithm>
13#include <array> // For std::begin and std::end.
14
15#include <stdint.h>
16
17// Internal implementation code.
18namespace
19{
20uint64_t Rotl(uint64_t x, int n) { return (x << n) | (x >> (64 - n)); }
21} // namespace
22
23void KeccakF(uint64_t (&st)[25])
24{
25 static constexpr uint64_t RNDC[24] = {
26 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
27 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
28 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
29 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
30 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
31 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
32 };
33 static constexpr int ROUNDS = 24;
34
35 for (int round = 0; round < ROUNDS; ++round) {
36 uint64_t bc0, bc1, bc2, bc3, bc4, t;
37
38 // Theta
39 bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
40 bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
41 bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
42 bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
43 bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
44 t = bc4 ^ Rotl(bc1, 1); st[0] ^= t; st[5] ^= t; st[10] ^= t; st[15] ^= t; st[20] ^= t;
45 t = bc0 ^ Rotl(bc2, 1); st[1] ^= t; st[6] ^= t; st[11] ^= t; st[16] ^= t; st[21] ^= t;
46 t = bc1 ^ Rotl(bc3, 1); st[2] ^= t; st[7] ^= t; st[12] ^= t; st[17] ^= t; st[22] ^= t;
47 t = bc2 ^ Rotl(bc4, 1); st[3] ^= t; st[8] ^= t; st[13] ^= t; st[18] ^= t; st[23] ^= t;
48 t = bc3 ^ Rotl(bc0, 1); st[4] ^= t; st[9] ^= t; st[14] ^= t; st[19] ^= t; st[24] ^= t;
49
50 // Rho Pi
51 t = st[1];
52 bc0 = st[10]; st[10] = Rotl(t, 1); t = bc0;
53 bc0 = st[7]; st[7] = Rotl(t, 3); t = bc0;
54 bc0 = st[11]; st[11] = Rotl(t, 6); t = bc0;
55 bc0 = st[17]; st[17] = Rotl(t, 10); t = bc0;
56 bc0 = st[18]; st[18] = Rotl(t, 15); t = bc0;
57 bc0 = st[3]; st[3] = Rotl(t, 21); t = bc0;
58 bc0 = st[5]; st[5] = Rotl(t, 28); t = bc0;
59 bc0 = st[16]; st[16] = Rotl(t, 36); t = bc0;
60 bc0 = st[8]; st[8] = Rotl(t, 45); t = bc0;
61 bc0 = st[21]; st[21] = Rotl(t, 55); t = bc0;
62 bc0 = st[24]; st[24] = Rotl(t, 2); t = bc0;
63 bc0 = st[4]; st[4] = Rotl(t, 14); t = bc0;
64 bc0 = st[15]; st[15] = Rotl(t, 27); t = bc0;
65 bc0 = st[23]; st[23] = Rotl(t, 41); t = bc0;
66 bc0 = st[19]; st[19] = Rotl(t, 56); t = bc0;
67 bc0 = st[13]; st[13] = Rotl(t, 8); t = bc0;
68 bc0 = st[12]; st[12] = Rotl(t, 25); t = bc0;
69 bc0 = st[2]; st[2] = Rotl(t, 43); t = bc0;
70 bc0 = st[20]; st[20] = Rotl(t, 62); t = bc0;
71 bc0 = st[14]; st[14] = Rotl(t, 18); t = bc0;
72 bc0 = st[22]; st[22] = Rotl(t, 39); t = bc0;
73 bc0 = st[9]; st[9] = Rotl(t, 61); t = bc0;
74 bc0 = st[6]; st[6] = Rotl(t, 20); t = bc0;
75 st[1] = Rotl(t, 44);
76
77 // Chi Iota
78 bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4];
79 st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round];
80 st[1] = bc1 ^ (~bc2 & bc3);
81 st[2] = bc2 ^ (~bc3 & bc4);
82 st[3] = bc3 ^ (~bc4 & bc0);
83 st[4] = bc4 ^ (~bc0 & bc1);
84 bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9];
85 st[5] = bc0 ^ (~bc1 & bc2);
86 st[6] = bc1 ^ (~bc2 & bc3);
87 st[7] = bc2 ^ (~bc3 & bc4);
88 st[8] = bc3 ^ (~bc4 & bc0);
89 st[9] = bc4 ^ (~bc0 & bc1);
90 bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14];
91 st[10] = bc0 ^ (~bc1 & bc2);
92 st[11] = bc1 ^ (~bc2 & bc3);
93 st[12] = bc2 ^ (~bc3 & bc4);
94 st[13] = bc3 ^ (~bc4 & bc0);
95 st[14] = bc4 ^ (~bc0 & bc1);
96 bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19];
97 st[15] = bc0 ^ (~bc1 & bc2);
98 st[16] = bc1 ^ (~bc2 & bc3);
99 st[17] = bc2 ^ (~bc3 & bc4);
100 st[18] = bc3 ^ (~bc4 & bc0);
101 st[19] = bc4 ^ (~bc0 & bc1);
102 bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24];
103 st[20] = bc0 ^ (~bc1 & bc2);
104 st[21] = bc1 ^ (~bc2 & bc3);
105 st[22] = bc2 ^ (~bc3 & bc4);
106 st[23] = bc3 ^ (~bc4 & bc0);
107 st[24] = bc4 ^ (~bc0 & bc1);
108 }
109}
110
112{
113 if (m_bufsize && m_bufsize + data.size() >= sizeof(m_buffer)) {
114 // Fill the buffer and process it.
115 std::copy(data.begin(), data.begin() + sizeof(m_buffer) - m_bufsize, m_buffer + m_bufsize);
116 data = data.subspan(sizeof(m_buffer) - m_bufsize);
118 m_bufsize = 0;
119 if (m_pos == RATE_BUFFERS) {
121 m_pos = 0;
122 }
123 }
124 while (data.size() >= sizeof(m_buffer)) {
125 // Process chunks directly from the buffer.
126 m_state[m_pos++] ^= ReadLE64(data.data());
127 data = data.subspan(8);
128 if (m_pos == RATE_BUFFERS) {
130 m_pos = 0;
131 }
132 }
133 if (data.size()) {
134 // Keep the remainder in the buffer.
135 std::copy(data.begin(), data.end(), m_buffer + m_bufsize);
136 m_bufsize += data.size();
137 }
138 return *this;
139}
140
142{
143 assert(output.size() == OUTPUT_SIZE);
144 std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0);
145 m_buffer[m_bufsize] ^= 0x06;
147 m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000;
149 for (unsigned i = 0; i < 4; ++i) {
150 WriteLE64(output.data() + 8 * i, m_state[i]);
151 }
152 return *this;
153}
154
156{
157 m_bufsize = 0;
158 m_pos = 0;
159 std::fill(std::begin(m_state), std::end(m_state), 0);
160 return *this;
161}
Definition: sha3.h:17
unsigned char m_buffer[8]
Definition: sha3.h:20
unsigned m_bufsize
Definition: sha3.h:21
static constexpr unsigned RATE_BUFFERS
Sponge rate expressed as a multiple of the buffer size.
Definition: sha3.h:28
SHA3_256 & Write(Span< const unsigned char > data)
Definition: sha3.cpp:111
SHA3_256 & Reset()
Definition: sha3.cpp:155
SHA3_256 & Finalize(Span< unsigned char > output)
Definition: sha3.cpp:141
unsigned m_pos
Definition: sha3.h:22
uint64_t m_state[25]
Definition: sha3.h:19
static constexpr size_t OUTPUT_SIZE
Definition: sha3.h:33
A Span is an object that can refer to a contiguous sequence of objects.
Definition: span.h:93
constexpr std::size_t size() const noexcept
Definition: span.h:182
CONSTEXPR_IF_NOT_DEBUG Span< C > subspan(std::size_t offset) const noexcept
Definition: span.h:189
constexpr C * data() const noexcept
Definition: span.h:169
constexpr C * begin() const noexcept
Definition: span.h:170
constexpr C * end() const noexcept
Definition: span.h:171
static uint64_t ReadLE64(const unsigned char *ptr)
Definition: common.h:31
static void WriteLE64(unsigned char *ptr, uint64_t x)
Definition: common.h:50
void KeccakF(uint64_t(&st)[25])
The Keccak-f[1600] transform.
Definition: sha3.cpp:23
assert(!tx.IsCoinBase())