7#ifndef SECP256K1_SCALAR_REPR_IMPL_H 
    8#define SECP256K1_SCALAR_REPR_IMPL_H 
   13#define SECP256K1_N_0 ((uint32_t)0xD0364141UL) 
   14#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL) 
   15#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL) 
   16#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL) 
   17#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL) 
   18#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL) 
   19#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL) 
   20#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL) 
   23#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1) 
   24#define SECP256K1_N_C_1 (~SECP256K1_N_1) 
   25#define SECP256K1_N_C_2 (~SECP256K1_N_2) 
   26#define SECP256K1_N_C_3 (~SECP256K1_N_3) 
   27#define SECP256K1_N_C_4 (1) 
   30#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL) 
   31#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL) 
   32#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL) 
   33#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL) 
   34#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL) 
   35#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL) 
   36#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL) 
   37#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL) 
   63    return (a->
d[offset >> 5] >> (offset & 0x1F)) & ((1 << 
count) - 1);
 
   69    if ((offset + 
count - 1) >> 5 == offset >> 5) {
 
   73        return ((a->
d[offset >> 5] >> (offset & 0x1F)) | (a->
d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << 
count) - 1);
 
   99    r->
d[0] = t & 0xFFFFFFFFUL; t >>= 32;
 
  101    r->
d[1] = t & 0xFFFFFFFFUL; t >>= 32;
 
  103    r->
d[2] = t & 0xFFFFFFFFUL; t >>= 32;
 
  105    r->
d[3] = t & 0xFFFFFFFFUL; t >>= 32;
 
  107    r->
d[4] = t & 0xFFFFFFFFUL; t >>= 32;
 
  108    t += (uint64_t)r->
d[5];
 
  109    r->
d[5] = t & 0xFFFFFFFFUL; t >>= 32;
 
  110    t += (uint64_t)r->
d[6];
 
  111    r->
d[6] = t & 0xFFFFFFFFUL; t >>= 32;
 
  112    t += (uint64_t)r->
d[7];
 
  113    r->
d[7] = t & 0xFFFFFFFFUL;
 
  119    uint64_t t = (uint64_t)a->
d[0] + b->
d[0];
 
  120    r->
d[0] = t & 0xFFFFFFFFULL; t >>= 32;
 
  121    t += (uint64_t)a->
d[1] + b->
d[1];
 
  122    r->
d[1] = t & 0xFFFFFFFFULL; t >>= 32;
 
  123    t += (uint64_t)a->
d[2] + b->
d[2];
 
  124    r->
d[2] = t & 0xFFFFFFFFULL; t >>= 32;
 
  125    t += (uint64_t)a->
d[3] + b->
d[3];
 
  126    r->
d[3] = t & 0xFFFFFFFFULL; t >>= 32;
 
  127    t += (uint64_t)a->
d[4] + b->
d[4];
 
  128    r->
d[4] = t & 0xFFFFFFFFULL; t >>= 32;
 
  129    t += (uint64_t)a->
d[5] + b->
d[5];
 
  130    r->
d[5] = t & 0xFFFFFFFFULL; t >>= 32;
 
  131    t += (uint64_t)a->
d[6] + b->
d[6];
 
  132    r->
d[6] = t & 0xFFFFFFFFULL; t >>= 32;
 
  133    t += (uint64_t)a->
d[7] + b->
d[7];
 
  134    r->
d[7] = t & 0xFFFFFFFFULL; t >>= 32;
 
  144    bit += ((uint32_t) flag - 1) & 0x100;  
 
  145    t = (uint64_t)r->
d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
 
  146    r->
d[0] = t & 0xFFFFFFFFULL; t >>= 32;
 
  147    t += (uint64_t)r->
d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
 
  148    r->
d[1] = t & 0xFFFFFFFFULL; t >>= 32;
 
  149    t += (uint64_t)r->
d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
 
  150    r->
d[2] = t & 0xFFFFFFFFULL; t >>= 32;
 
  151    t += (uint64_t)r->
d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
 
  152    r->
d[3] = t & 0xFFFFFFFFULL; t >>= 32;
 
  153    t += (uint64_t)r->
d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
 
  154    r->
d[4] = t & 0xFFFFFFFFULL; t >>= 32;
 
  155    t += (uint64_t)r->
d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
 
  156    r->
d[5] = t & 0xFFFFFFFFULL; t >>= 32;
 
  157    t += (uint64_t)r->
d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
 
  158    r->
d[6] = t & 0xFFFFFFFFULL; t >>= 32;
 
  159    t += (uint64_t)r->
d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
 
  160    r->
d[7] = t & 0xFFFFFFFFULL;
 
  169    r->
d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
 
  170    r->
d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
 
  171    r->
d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
 
  172    r->
d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
 
  173    r->
d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
 
  174    r->
d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
 
  175    r->
d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
 
  176    r->
d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
 
  184    bin[0] = a->
d[7] >> 24; bin[1] = a->
d[7] >> 16; bin[2] = a->
d[7] >> 8; bin[3] = a->
d[7];
 
  185    bin[4] = a->
d[6] >> 24; bin[5] = a->
d[6] >> 16; bin[6] = a->
d[6] >> 8; bin[7] = a->
d[6];
 
  186    bin[8] = a->
d[5] >> 24; bin[9] = a->
d[5] >> 16; bin[10] = a->
d[5] >> 8; bin[11] = a->
d[5];
 
  187    bin[12] = a->
d[4] >> 24; bin[13] = a->
d[4] >> 16; bin[14] = a->
d[4] >> 8; bin[15] = a->
d[4];
 
  188    bin[16] = a->
d[3] >> 24; bin[17] = a->
d[3] >> 16; bin[18] = a->
d[3] >> 8; bin[19] = a->
d[3];
 
  189    bin[20] = a->
d[2] >> 24; bin[21] = a->
d[2] >> 16; bin[22] = a->
d[2] >> 8; bin[23] = a->
d[2];
 
  190    bin[24] = a->
d[1] >> 24; bin[25] = a->
d[1] >> 16; bin[26] = a->
d[1] >> 8; bin[27] = a->
d[1];
 
  191    bin[28] = a->
d[0] >> 24; bin[29] = a->
d[0] >> 16; bin[30] = a->
d[0] >> 8; bin[31] = a->
d[0];
 
  195    return (a->
d[0] | a->
d[1] | a->
d[2] | a->
d[3] | a->
d[4] | a->
d[5] | a->
d[6] | a->
d[7]) == 0;
 
  201    r->
d[0] = t & nonzero; t >>= 32;
 
  203    r->
d[1] = t & nonzero; t >>= 32;
 
  205    r->
d[2] = t & nonzero; t >>= 32;
 
  207    r->
d[3] = t & nonzero; t >>= 32;
 
  209    r->
d[4] = t & nonzero; t >>= 32;
 
  211    r->
d[5] = t & nonzero; t >>= 32;
 
  213    r->
d[6] = t & nonzero; t >>= 32;
 
  215    r->
d[7] = t & nonzero;
 
  219    return ((a->
d[0] ^ 1) | a->
d[1] | a->
d[2] | a->
d[3] | a->
d[4] | a->
d[5] | a->
d[6] | a->
d[7]) == 0;
 
  243    uint32_t mask = !flag - 1;
 
  245    uint64_t t = (uint64_t)(r->
d[0] ^ mask) + ((
SECP256K1_N_0 + 1) & mask);
 
  246    r->
d[0] = t & nonzero; t >>= 32;
 
  248    r->
d[1] = t & nonzero; t >>= 32;
 
  250    r->
d[2] = t & nonzero; t >>= 32;
 
  252    r->
d[3] = t & nonzero; t >>= 32;
 
  254    r->
d[4] = t & nonzero; t >>= 32;
 
  256    r->
d[5] = t & nonzero; t >>= 32;
 
  258    r->
d[6] = t & nonzero; t >>= 32;
 
  260    r->
d[7] = t & nonzero;
 
  261    return 2 * (mask == 0) - 1;
 
  268#define muladd(a,b) { \ 
  271        uint64_t t = (uint64_t)a * b; \ 
  279    VERIFY_CHECK((c1 >= th) || (c2 != 0)); \ 
  283#define muladd_fast(a,b) { \ 
  286        uint64_t t = (uint64_t)a * b; \ 
  293    VERIFY_CHECK(c1 >= th); \ 
  306#define sumadd_fast(a) { \ 
  309    VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \ 
  310    VERIFY_CHECK(c2 == 0); \ 
  314#define extract(n) { \ 
  322#define extract_fast(n) { \ 
  326    VERIFY_CHECK(c2 == 0); \ 
  331    uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
 
  332    uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
 
  333    uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
 
  340    c0 = l[0]; c1 = 0; c2 = 0;
 
  405    c0 = m0; c1 = 0; c2 = 0;
 
  451    r->
d[0] = c & 0xFFFFFFFFUL; c >>= 32;
 
  453    r->
d[1] = c & 0xFFFFFFFFUL; c >>= 32;
 
  455    r->
d[2] = c & 0xFFFFFFFFUL; c >>= 32;
 
  457    r->
d[3] = c & 0xFFFFFFFFUL; c >>= 32;
 
  458    c += p4 + (uint64_t)p8;
 
  459    r->
d[4] = c & 0xFFFFFFFFUL; c >>= 32;
 
  461    r->
d[5] = c & 0xFFFFFFFFUL; c >>= 32;
 
  463    r->
d[6] = c & 0xFFFFFFFFUL; c >>= 32;
 
  465    r->
d[7] = c & 0xFFFFFFFFUL; c >>= 32;
 
  473    uint32_t c0 = 0, c1 = 0, c2 = 0;
 
  576    ret = r->
d[0] & ((1 << n) - 1);
 
  577    r->
d[0] = (r->
d[0] >> n) + (r->
d[1] << (32 - n));
 
  578    r->
d[1] = (r->
d[1] >> n) + (r->
d[2] << (32 - n));
 
  579    r->
d[2] = (r->
d[2] >> n) + (r->
d[3] << (32 - n));
 
  580    r->
d[3] = (r->
d[3] >> n) + (r->
d[4] << (32 - n));
 
  581    r->
d[4] = (r->
d[4] >> n) + (r->
d[5] << (32 - n));
 
  582    r->
d[5] = (r->
d[5] >> n) + (r->
d[6] << (32 - n));
 
  583    r->
d[6] = (r->
d[6] >> n) + (r->
d[7] << (32 - n));
 
  584    r->
d[7] = (r->
d[7] >> n);
 
  608    return ((a->
d[0] ^ b->
d[0]) | (a->
d[1] ^ b->
d[1]) | (a->
d[2] ^ b->
d[2]) | (a->
d[3] ^ b->
d[3]) | (a->
d[4] ^ b->
d[4]) | (a->
d[5] ^ b->
d[5]) | (a->
d[6] ^ b->
d[6]) | (a->
d[7] ^ b->
d[7])) == 0;
 
  613    unsigned int shiftlimbs;
 
  614    unsigned int shiftlow;
 
  615    unsigned int shifthigh;
 
  618    shiftlimbs = shift >> 5;
 
  619    shiftlow = shift & 0x1F;
 
  620    shifthigh = 32 - shiftlow;
 
  621    r->
d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  622    r->
d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  623    r->
d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  624    r->
d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  625    r->
d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  626    r->
d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  627    r->
d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
 
  628    r->
d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow)  : 0;
 
  633    uint32_t mask0, mask1;
 
  635    mask0 = flag + ~((uint32_t)0);
 
  637    r->
d[0] = (r->
d[0] & mask0) | (a->
d[0] & mask1);
 
  638    r->
d[1] = (r->
d[1] & mask0) | (a->
d[1] & mask1);
 
  639    r->
d[2] = (r->
d[2] & mask0) | (a->
d[2] & mask1);
 
  640    r->
d[3] = (r->
d[3] & mask0) | (a->
d[3] & mask1);
 
  641    r->
d[4] = (r->
d[4] & mask0) | (a->
d[4] & mask1);
 
  642    r->
d[5] = (r->
d[5] & mask0) | (a->
d[5] & mask1);
 
  643    r->
d[6] = (r->
d[6] & mask0) | (a->
d[6] & mask1);
 
  644    r->
d[7] = (r->
d[7] & mask0) | (a->
d[7] & mask1);
 
  648    const uint32_t a0 = a->
v[0], a1 = a->
v[1], a2 = a->
v[2], a3 = a->
v[3], a4 = a->
v[4],
 
  649                   a5 = a->
v[5], a6 = a->
v[6], a7 = a->
v[7], a8 = a->
v[8];
 
  664    r->
d[0] = a0       | a1 << 30;
 
  665    r->
d[1] = a1 >>  2 | a2 << 28;
 
  666    r->
d[2] = a2 >>  4 | a3 << 26;
 
  667    r->
d[3] = a3 >>  6 | a4 << 24;
 
  668    r->
d[4] = a4 >>  8 | a5 << 22;
 
  669    r->
d[5] = a5 >> 10 | a6 << 20;
 
  670    r->
d[6] = a6 >> 12 | a7 << 18;
 
  671    r->
d[7] = a7 >> 14 | a8 << 16;
 
  679    const uint32_t M30 = UINT32_MAX >> 2;
 
  680    const uint32_t a0 = a->
d[0], a1 = a->
d[1], a2 = a->
d[2], a3 = a->
d[3],
 
  681                   a4 = a->
d[4], a5 = a->
d[5], a6 = a->
d[6], a7 = a->
d[7];
 
  688    r->
v[1] = (a0 >> 30 | a1 <<  2) & M30;
 
  689    r->
v[2] = (a1 >> 28 | a2 <<  4) & M30;
 
  690    r->
v[3] = (a2 >> 26 | a3 <<  6) & M30;
 
  691    r->
v[4] = (a3 >> 24 | a4 <<  8) & M30;
 
  692    r->
v[5] = (a4 >> 22 | a5 << 10) & M30;
 
  693    r->
v[6] = (a5 >> 20 | a6 << 12) & M30;
 
  694    r->
v[7] = (a6 >> 18 | a7 << 14) & M30;
 
  699    {{0x10364141L, 0x3F497A33L, 0x348A03BBL, 0x2BB739ABL, -0x146L, 0, 0, 0, 65536}},
 
  732    return !(a->
d[0] & 1);
 
static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo)
static SECP256K1_INLINE int secp256k1_scalar_is_even(const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_check_overflow(const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift)
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static SECP256K1_INLINE void secp256k1_scalar_clear(secp256k1_scalar *r)
#define extract(n)
Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits.
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow)
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b)
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x)
#define sumadd_fast(a)
Add a to the number defined by (c0,c1).
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
static SECP256K1_INLINE void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x)
static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag)
#define extract_fast(n)
Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits.
#define muladd(a, b)
Add a*b to the number defined by (c0,c1,c2).
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l)
static SECP256K1_INLINE int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
#define sumadd(a)
Add a to the number defined by (c0,c1,c2).
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag)
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
static const secp256k1_modinv32_modinfo secp256k1_const_modinfo_scalar
static SECP256K1_INLINE int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow)
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a)
static SECP256K1_INLINE int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
static SECP256K1_INLINE unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count)
static void secp256k1_scalar_from_signed30(secp256k1_scalar *r, const secp256k1_modinv32_signed30 *a)
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag)
#define muladd_fast(a, b)
Add a*b to the number defined by (c0,c1).
static SECP256K1_INLINE int secp256k1_scalar_is_one(const secp256k1_scalar *a)
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n)
static void secp256k1_scalar_to_signed30(secp256k1_modinv32_signed30 *r, const secp256k1_scalar *a)
#define VG_CHECK_VERIFY(x, y)
#define VERIFY_CHECK(cond)
A scalar modulo the group order of the secp256k1 curve.